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Abstract. Non-self-dual monopole solutions are presented for a class of SU( n )  Yang-Mills- 
Higgs models in three dimensions. The models in question are obtained by dimensional 
reduction of pure Yang-Mills theories in even d > 4 dimensions. The Higgs field can 
belong to the adjoint representation or the adjoint 0 scalar representation of SU(n). In 
the former case, constraints on the solutions reduce the number of independent ansatz 
functions in the spherical symmetry ansatz. 

Monopole solutions of the Yang-Mills-Higgs (YMH) system in three dimensions have 
been studied for some time and many such solutions are known [ 1-31. These solutions 
fall into two distinct categories which we label I and 11. YMH field configurations of 
type I correspond to a Lagrangian density which incorporates a Higgs (self-interaction) 
potential. This potential, of course, ensures that the Higgs fields have the appropriate 
non-zero asymptotic limits. The original solution [ 13 for the SU(2) YMH system belongs 
to this class. The SU(3) solution [4], with Higgs vacuum proportional to the SU(3) 
generator A s ,  also belongs to this class; however, this solution is equivalent to the 
SU(2) solution. It is important to note that no explicit solutions of type I have been 
discovered yet. On the other hand, explicit solutions of type I1 are known [2,3]. YMH 

field configurations of type I1 occur in the Bogomolny’i-Prasad-Sommerfield [2,4,5] 
limit, where the coupling constant giving the strength of the Higgs potential vanishes. 
The solutions of type I1 are the self-dual monopoles, while those of type I are 
non-self-dual. It is because the first-order self-duality equations are simple to solve 
(relative to the equations of motion) that explicit solutions have been found for I1 but 
not for I. In all of the above cases the Higgs field lies in the adjoint representation 
of the gauge group. 

In this letter we are concerned with spherically symmetric monopole solutions of 
type I for the gauge group SU(n).  The solutions which we find-one for each value 
of n-fall into two distinct sets, according to whether n is even or odd. For even n 
the solutions can be viewed as generalisations of the original SU(2) solution [ 11-indeed 
the n = 2 solution we find is precisely that solution. For odd n the solutions can be 
viewed as generalisations of the SU(3) solution [4], and again our n = 3 solution is 
just that previously constructed solution. The solutions which we present for n > 3 
are new. 
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As our solutions are type I we do not present explicit solutions. For each n the 
solution is determined by specifying, for the Higgs fields, a particular set of non-zero 
asymptotic boundary conditions. The choice of asymptotic boundary conditions for 
the Higgs fields-the Higgs vacuum-is made to facilitate the proof of existence of 
such finite-energy solutions [6]. 

The SU( n )  YMH model which we use to construct this class of solutions is obtained 
from a pure Yang-Mills ( Y M )  system in an even d-dimensional space, where d > 4, 
by dimensional reduction down to three dimensions. The calculus of dimensional 
reduction used is based on a particular formulation [ 7 ]  giving a reduction of two and 
three dimensions, generalised [ 8 ]  to reduction of an arbitrary odd number of 
dimensions. This procedure leads to a Higgs potential 

where @ is the adjoint Higgs field and 0 and 7 are constants whose significance will 
be discussed later. It is just this Higgs potential which will give rise to the correct 
asymptotic behaviour of the Higgs fields to ensure that finite-energy solutions do occur. 

It was previously shown in [ 8 ]  that subjecting the Chern-Pontryagin integral in 
even d dimensions to dimensional reduction induced by Md = E, x S d - 3  yields a surface 
integral on E,. Moreover, depending on the asymptotic properties of the integrand 
(consistent with the asymptotic properties of the original integrand) this integral on 
E, might be non-zero and finite, say equal to p, the magnetic charge of the field 
configuration. Subjecting a YM system in d dimensions to the same dimensional 
reduction results in a Y M H  system with a Higgs potential in which the only arbitrary 
parameter is the (radius)-' of the sphere of compactification, 7. This residual YMH 
system may have finite energy for field configurations which also yield a finite magnetic 
charge p, though it is clear that the energy in such cases cannot be equal to p. The 
presence of a Higgs potential indicates that the field configuration in question is not 
self-dual. At the same time, however, it is by no means certain that the energy of the 
residual Y M H  system can be finite, since it is known [ 9 ]  that the YM system in higher 
than four dimensions cannot have finite energy. For the dimensional reduction pro- 
cedure we consider, however, that the residual YMH system does possess finite-energy 
field configurations which we now present. 

The YMH system in three dimensions under examination is described by the 
Lagrangian density 

Tr[721+(@++l)2]2 (1) 

L = Tr[$Fi+i(D,4)2 - ( v21 + 42)2] (2) 

FIJ - a J A I + [ A 1 9  ' J ]  ( 3 a )  
Dl4 = at4 + [ A , ,  41 ( 3 b )  
4 = 0 + 0 1  (3c) 

where the indices i, j = 1, 2, 3 and where 

and 7 is the (radius)-' of the sphere of compactification. It is clear that ( l / n )O  is 
the trace of 4. In principle, 0 could be an independent field, but as that leads to 
Higgs fields which are not purely adjoint we do not pursue that possibility initially. 
Consequently we impose the constraint 

(4) 0 = constant 
in a consistent fashion, i.e. we ensure that (4) is a consistent solution of the equations 
of motion resulting from (2). It is also to be noted that we are using anti-Hermitian 
fields, so each term in (2) is negative definite. 
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We seek spherically symmetric field configurations for the system described by 
equations (2)-(4). Spherical symmetry in three dimensions has been exhaustively 
studied [lo, 111. Different types of spherical symmetry can be imposed for the gauge 
group SU(n) corresponding to the different mappings of SO(3) into SU(n). The 
embedding for which the third generator of SO(3) takes the form 

T3 = -i diag(;(n - 1 ) , t ( n  - 1 ) -  1 , .  . . , 1 - i ( n  - l ) ,  -f(n - 1) )  ( 5 )  

is the commonly used one, as in this case the spherically symmetric ansatz yields a 
(U( l ) )n- l  model [ l l ] .  In the  case of all other embeddings the spherical symmetry 
ansatz yields non-Abelian models; these cases will be discussed elsewhere. We adopt 
the notation of [ll],  which makes the above choice of embedding, for our ansatz: 

B = ( 1 /  r ) M  j i + (1 /  r)MSj + (1 /  r 2 ) (  [ M1, M2] - T,)k ( 6 a )  

D4 = ( l / r ) [ W ,  41i-(1/r)[Mly 4 l j + 4 ’ k  ( 6 b )  

In these equations the functions +,, a, for (Y = 1 , .  . . , n - 1 and their derivatives with 
respect to r, namely +;, a; for a = 1 , .  . . , n - 1, depend only on the radial-variable r. 
8 is a constant whose value will be specified later. In terms of the ansatz functions 
+,, a,, (Y = 1 , .  . . , n - 1,  the energy integral takes the form 

E = [owdr(4[(aj)’+. . .+(a;-,)’] 

+ f r 2 [ ( 4 Y + ( 4 5 -  4 # + .  * .+(4L-1- 4 ; - 2 ) 2 +  (4k-A2I 

+ (l/rZ)[(a;- n + 1 y +  ( a 2  - a, - n + 3 y + .  . .+ ( n  - 1 - an-,)2] 

+ [ ( - i 4 n - 1 + ~ ) 2 - v 2 1 ) )  (7) 

$[a:(+, - 241)’ -t - 2 6 2  41 )’ +. * * -I- ai- ,  ( - 2 4 n - 1  -I- 4 n - A 2 1  

++’{[(i4, + e)’- 772]2+[(t(42 - 4,) + e)’- v212+. . . 

where we recognise by inspection the (U( l))”-’ gauge structure. 
The method we use to establish the existence of solutions is that due to Tyupkin 

et al [ 6 ]  (TFS). To begin with, we know that the Euler-Lagrange equations of the 
system (2) with respect to the variations SO, SQ and SA, are solved [lo, 111 by the 
Euler-Lagrange equations of the energy integral (7) with respect to the variations S4,, 
Sa,, a = 1, . . . , n - 1. Thus it is sufficient to prove existence for the problem determined 
by the functional E ( & ,  a,) given by (7). The TFS method consists of verifying that 
E ( & ,  a,) attains its minimal value for some particular set of functions. 

Consider first the finite-energy condition E ( 4 , ,  a,) < CO. The convergence of the 
integral as a whole and the positivity of each term in the integrand ensures that each 
term must converge separately. In particular, the Higgs potential term must converge. 
This allows us to infer the asymptotic values &(CO),  a = 1,  . . . , n - 1. For given n 
there are many different allowed sets of asymptotic values. However, to satisfy the 
technical conditions of the TFS method it is necessary to restrict our attention to those 
asymptotic values which give rise to non-zero values for 

( 8 )  (42-241)9 ( 4 3 - 2 4 2 +  4113.. 9 ( - 2 4 n - 2 +  4 n - 1 )  
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whose squares are the coefficients of a:, . . . , a:- ,  in the gauge-Higgs interaction term 
in (7). A simple analysis shows that, for each n, there are just two sets of solutions 
(related by a minus sign). However, these solutions exist only if the hitherto arbitrary 
constant parameter 8 takes m specified values. The solutions fall into two classes 
depending on whether n is even or odd. 

n even. In this case 0 = 0. We list below the asymptotic values in units of 277, i.e. 
2, = 4, (”7:  

n = 2  6 ,  = *l  

n = 6  & = * l  ;2=0 63 = *I  f ,=o C$5 = * l .  

A A 

n = 4  41 = *l  & = O  ~ $ ~ = * l  
1. 

Arbitrary even n :  

i odd 
0 i even. ( 9 )  

n odd. In this case 
units of (4/n)77, i.e. 4, = 4 , ( ~ ) / ( 4 / n ) 7 7 :  

= rt(l /n)v.  We list below the asymptotic values C$,(CO) in 

n = 3  & = * l  $2=T1 

n = 5  6 ,  = *2 6 2 = F 1  & = *l $,= ~2 

n = 7  4 1  = *3 & = T l  c$3 = *2 &= 7 2  

& = r3. 

A 

G5 = *1 

Arbitrary odd n :  

*t( n - i )  i odd 
i even. i i  = { 

The asymptotic values of the functions 4, ( I )  correspond to the following asymptotic 
structure for the adjoint Higgs field: 

n even @(a)=*diag277(1, - l , l , - l , . . . ,  1,-1) (1 la)  

n odd @(a) = *diag 27(1-  l/n, - ( 1 +  l /n) ,  1 - l /n ,  

- ( 1 +  l /n) ,  . . . , -( 1 + l /n) ,  1 - 1/n) .  (1lb) 

The invariance group of @(CO) can be read off by inspection: for n even it is SU($n) x 
S U ( f n )  for n > 2 and U(1) x U( 1 )  for n = 2, while for n odd it is S U ( f ( n  + 1 ) )  x 
SU(i(n - 1 ) )  for n > 3 and SU(2) x U( 1 )  for n = 3. The proof of existence of field 
configurations with asymptotic boundary conditions given by (9) or (10) is quite 
technical [ 6 , 8 ]  and will be reported elsewhere. 

It is interesting to note that the solution corresponding to the n = 2 case in equation 
(9) is the Higgs vacuum for the ’t Hooft-Polyakov [ l ]  monopole, with a fixed value 
for the coupling constant, while the n = 3 case in equations (10) is the non-self-dual 
monopole orbit found by Burzlaff [4]. Of course, all the solutions presented here are 
non-self-dual. 
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At first glance it would appear that the spherical symmetry ansatz (6) is a 2(n - 1) 
function ansatz. However, consistent imposition of the constraint (4) reduces the 
number of independent functions in the ansatz. Consider the Euler-Lagrange equation 
for the field 4, given by (3c), 

DiDi4 + 2 (  T 2 +  42)(b = 0. (12) 

nAO= - 2 T r ( @ 3 + 3 @ 2 0 ) - 2 n 0 ( 7 2 + 0 2 ) .  (13) 

Tr (Q3+3020)  + ne( q 2 +  0’) = 0. (14) 

Equation (14) acts as a constraint on the ansatz functions c#I~, a, for CY = 1, . . . , n - 1, 
and will clearly reduce the number of independent functions. Indeed (14) reduces the 
SU(3) solution to a two-function field configuration, i.e. equivalent to an SU(2) solution, 
as we show below. 

It is actually possible to solve the constraint equation (14). Let us consider first 
the odd n cases. The constraint in this case is then 

The trace of (12) yields the equation of motion for 0, namely 

Clearly 0 = constant is a consistent solution of this equation only if 

T rQ2( iQ+(3 /n )7 )=  - ~ ~ ( l - l / n , ) .  (15) 

(41-$7)(42+$7)(42-41 -$7) =o. (16) 

The n = 3 (i.e. SU(3)) constraint is particularly simple, namely 

Of the three solutions of (16) one solution, 42- 4, =$7, is not consistent with the 
asymptotic conditions ( l o ) ,  but the remaining two solutions 

(17a) 4 - 4  

4 2  = -h (17b) 

1 - 3 7  

are both acceptable. When these constraints are substituted into the equations of 
motion for the functions 41( r )  and &( r )  they lead, respectively, to the further con- 
straints 

a,=O (18a) 

a, = 0. (18b) 
Thus, for SU(3), the finite-energy field configuration is parametrised in terms of only 
two radial functions, either (+,, a,) or (qj2, a2), and not four. 

Now let us consider the even n cases. The constraint is 

T ~ Q ~ = O  (19) 
as, for even n, 0 = 0. The n = 2 case is trivial, as (19) is identically satisfied. The n = 4 
(i.e. SU(4)) constraint is also particularly simple, namely 

42(43 - 4A4,  + 4 3  - 42) = 0. (20) 
The solution 
remaining two solutions 

+ 43 = 42 is not consistent with the asymptotic conditions (9) but the 

42=0 (21a) 

41 = 43 (21b) 
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are both acceptable. These solutions lead in turn to the further constraints 

a2=O (22a) 

a,  = *a3 

respectively. Consequently we see that there are two classes of solutions. Class (i)  is 
characterised by 42 = a2 = 0, so that there are four radial functions ( +,, 43, a , ,  a3) .  
However, in this case the equations decouple into two identical sets of SU(2) equations 
for (+,, a , )  and (43, a3) yielding a two-function, or SU(2), solution. Class (ii), on the 
other hand, is characterised by four functions ( # J ~ ,  +2,  a , ,  a 2 )  for which the equations 
of motion do not decouple. The class (ii) solutions, then, are true four-function 
solutions. 

For n > 4 the constraint equations (15 )  and (19) can be solved by inspection. For 
n odd, equation (15) is solved by the following two sets of solutions: 

41 = f ( n  -1)(4/n)r1 43=;(n-3)(4/n)77 . . .  d J n - 2 =  (4/n)77 (23a) 

(236) 
42= -(4/n)77 + 4 =  -2(4/n)77 . . .  & - 1 = - $ ( n - l ) ( 4 / n ) ~ .  

Substitution of (23a) and (236) in turn into the Euler-Lagrange equations leads to 
the further constraints 

a ,  = a 3 = .  . . = an-,=O 

a, = a4 = . . . = a,,-, = 0. 

(24a) 

(246) 
The resulting equations of motion for the remaining ( n  - 1 )  functions (&, a,) a = 
2 ,4 , .  . . , n - 1 or a = 1 , 3 , .  . . , n - 2  decouple for each CY separately. The pairs of 
uncoupled equations are all different, however, so that the corresponding field configur- 
ation is parametrised by ( n  - 1 )  different radial functions. 

On the other hand, for even n, (19) is solved by each of 

42 = f#J4=. . . = 4n-2 = o  
41 = 43 =. . . = 4n-3, c#ln-2=0. 

(25a) 

(256) 
When substituted into the equations of motion these constraints lead to 

a2 = a 4 = .  . . = an-2 = 0 ( 2 6 ~ )  
a:= a : = .  . . = a:-,  (266) 

respectively. When the constraints (25a) and (26a) are combined the equations of 
motion decouple; the remaining n functions (&, a,) for a = 1 , 3 ,  . . . , n - 1 satisfy 
identical differential equations for each value of a. Thus the solutions of the differential 
equations are identical and we have a two-function field configuration, as seen above 
for n =4 .  However, the constraints (256) and (266) lead to n differential equations 
for the ( n  -2)  radial functions (&, a, )  a = 1 , 2 , .  . . , n - 4  and the pair (+,,-,, an-2)  
which do not decouple. The resulting field configuration is parametrised by n different 
radial functions. 

We have not found any field configurations parametrised by more than ( n  - 1 )  
different radial functions for n odd, or more than n different radial functions for n 
even. An exhaustive survey of all the solutions lies beyond the scope of this letter. 
What we have established, however, is the existence of non-trivial multi-function 
finite-energy YMH field configurations. 
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The analysis of this letter can be extended in a number of directions. It is not 
critical to the TFS method that 0 should be constant. Indeed relaxation of the constraint 
(4) simplifies the existence proof somewhat. The appropriate asymptotic limits on 
e( r )  will be 

e ( a )  = *( l /n) l7  for n odd ( 2 7 a )  

e ( a )  = o for n even. ( 2 7 b )  

As the constraints discussed above are not relevant, our method will establish the 
existence of solutions for a ( 2 n  - 1)-function spherically symmetric ansatz, the ( 2 n  - 1) 
functions being e ( r ) ,  & ( r ) .  . . c$n-l(r), a l ( r )  . . . ~ , , - ~ ( r ) .  In this model the Higgs field 
belongs to the adjoint 0 scalar representation of SU( n ) .  

The extension of the analysis of this letter to spherically symmetric ansatze different 
from those of (5) and (6) is being investigated at present and will be reported in a 
future publication. 

We would like to thank Dr J Burzlaff for discussions and the UWO Academic 
Development Fund for financial support. 
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